
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
On-line learning of unrealizable tasks
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The dynamics of on-line learning is investigated for structurally unrealizable tasks in the context of two-
layer neural networks with an arbitrary number of hidden neurons. Within a statistical mechanics framework,
a closed set of differential equations describing the learning dynamics can be derived, for the general case of
unrealizable isotropic tasks. In the asymptotic regime one can solve the dynamics analytically in the limit of a
large number of hidden neurons, providing an analytical expression for the residual generalization error, the
optimal and critical asymptotic training parameters, and the corresponding prefactor of the generalization error
decay.@S1063-651X~99!03211-0#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Learning in layered neural networks refers to the mod
cation of internal network parametersJ, so as to bring the
map implemented by the networkf J as close as possible to
desired mapf B . The resulting performance is monitore
through thegeneralization error, a measure of the dissimi
larity betweenf J and f B . Two-layer feed-forward networks
are widely used in classification and regression applicatio
mainly due to their ability to implement any input-outp
mapping, in any desired accuracy, provided that the hid
layer has a sufficient number of neurons@1#. The scenario in
which the network doesnot have a sufficient number of neu
rons to implement a certain input-output mapping is term
structurally unrealizable; in any other case the task isreal-
izable.

Structural unrealizability has been examined, via stati
cal physics techniques examining the equilibrium distrib
tion of models, mainly for the case of the perceptron@2,3#,
due to the technical difficulties of examining multilayer ne
works. In this paper we focus on the analysis of structura
unrealizable tasks in multilayer networks in theon-line
learning scenario. On-line learning is a popular method
training multilayer feed-forward neural networks, where n
work parameters are updated according to only the latest
sequence of training examples. On-line methods can be
eficial in terms of both storage and computational time, a
also allow for temporal changes in the task being learned.
overview of on-line learning methods in neural networks c
be found in@4#. We analyze unrealizability insoft committee
machine~SCM! networks@5#, in which the hidden units are
connected to the output unit with positive couplings of fix
strength, and only the input-to-hidden couplings are ad
tive. The learning problem can be formulated in a gene
student-teacher framework, in which astudentSCM network
with K hidden neurons is trained on examples generated
teachernetwork of similar configuration, but withM hidden
neurons. In unrealizable scenarios, the complexity of the
M is greater then the complexity of the student networkK
,M , andL5M2K measures the degree of structural un
alizability.
PRE 601063-651X/99/60~5!/5902~10!/$15.00
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We employ a statistical mechanics framework develop
in @6# which allows us to describe analytically the learnin
dynamics, by means of a closed set of differential equati
for the order parameters, with the number of examples p
ing the role of time. The effects of unrealizability on th
evolution of the order parameters and the generalization e
are studied numerically in all phases of learning process.
focus on the asymptotic phase, which is particularly intere
ing since here, contrary to realizable scenarios, no p
knowledge of the asymptotic solutions exists. Asympto
cally, the system converges towards a stable fixed p
which corresponds to a nonzero residual generalization e
whose value increases with the learning rate, and is non
even for an asymptotically vanishing learning rate. Althou
asymptotic solutions cannot be obtained analytically in g
eral, one can obtain analytical solutions in the limit of lar
student network sizeK. The dependence of the generaliz
tion error decay on the network architecture and param
choice is then derived, providing the optimal and critic
asymptotic learning rate value as a function of the unrea
ability measureL, in both standard and normalized SC
architectures defined below.

II. THE FRAMEWORK
AND THE DYNAMICAL EQUATIONS

Consider a mapping from an input spacejPRN onto a
scalarfJ(j)5g( i 51

K g(Ji
Tj ), which defines a SCM~termed

the ‘‘student’’ network!, whereJ[$Ji%1< i<K is the set of
input-to-hidden adaptable weights and the hidden-to-ou
weights are of fixed strengthg. We choose g(x)
[erf(x/A2) to be the sigmoidal activation function of th
hidden units. The activation of the student hidden uniti un-
der presentation of the input patternj m is denotedxi

m

5Ji
Tj m.

Let (j m,zm) be themth input-target pair in a sequence o
training examples. Components of the input vectorsj m are
drawn independently, at each iteration, from a zero m
Gaussian distribution with unitary variance. The correspo
ing targetzm is given by ateacher networkwith the same
architecture of the student except for a possible differenc
5902 © 1999 The American Physical Society
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PRE 60 5903ON-LINE LEARNING OF UNREALIZABLE TASKS
FIG. 1. Evolution of the order parameters an
generalization error for the caseM54, K53 is
shown here for~a! the student-student overla
Qik , ~b! the student-teacher overlapRin , and~c!
the generalization error. Initial conditions areQ
50.5, R5U@0,10212#.
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the numberM of hidden units, and is defined by the weig
vectors B[$Bn%1<n<M . The target mapping is therefor
z(j m)5g(n51

M g(yn
m), whereyn

m5Bn
Tj m is the activation of

the teacher hidden unitn. We will use indicesi , j ,k,l to refer
to units in the student network andn,m for units in the
teacher network.

In standard SCM, the strength of hidden-to-outp
weights is unitary (g51). The SCM network is referred to
as normalizedif g51/(no. of hidden units); in this case th
map implemented by the student and teacher network
fJ(j )5(1/K)( i 51

K g(x) and z(j )5(1/M )(n51
M g(yn), re-

spectively, so that the output of the teacher and student
works will have the same range@21,1#, even if the number
of hidden units is differentKÞM and they implement map
of different complexity.

The case of a perfectly realizable taskK5M has been
analyzed in@6# ~for the standard SCM! and in @7# ~for the
normalized SCM!. We focus here on the unrealizable sc
narioM.K. The error made by a student with weightsJ on
a given input j is provided by the quadratic deviatio
«(J,j )51/2@zm2fJ(j m)#2. The most basic on-line learn
ing rule is to perform gradient descent on this quantity. Th
the update of each weight in response to the presentatio
the mth example (j m,zm) has the form

Ji
m115Ji

m1
h

N
d i

mj m, ~1!

where d i
m[gg8(xi

m)@zm2fJ(j m)# and the learning rateh
has been scaled with the input sizeN. Performance on a
typical input defines the generalization error«g
[^«(J,j )&$j% through an average over all possible input ve
tors j.

We use a statistical mechanics description of the learn
process@6# which is exact in the limit of large input dimen
sion N where the dynamics of gradient descent learning
the unrealizable scenario is completely described by a s
set of order parameterŝxixj&5Ji

TJk[Qik , ^xiyn&5Ji
TBn

[Rin , and ^ynym&5Bn
TBm[Tnm , measuring overlaps be
t

is

et-

-

n
of

-

g

n
all

tween student and teacher vectors. The order parameter
necessary and sufficient to determine the generalization e
«g5^«(J,j )&$j% .

If we interpret the normalized number of examplesa
5m/N as a continuous time variable, the update equati
~1! gives rise to first-order coupled differential equations
the form

dRin

da
5h^d i

myn&,

dQik

da
5h^d i

mxjd j
mxi&1h2^d i

md i
m&, ~2!

where the angled brackets denote averages over inputs.
erages in Eq.~2! can be carried out analytically for arbitrar
K and M5K1L, providing a closed set of equations o
motion. Note thatd i is slightly different for standard or nor
malized SCM architecture, as well as the correspond
equations of motion.

III. STRUCTURE OF THE SOLUTIONS
IN UNREALIZABLE SCENARIOS

In the unrealizable scenario the student does not h
enough resources to imitate the teacher units accurately
if an infinite number of examples is provided, so one m
expect residual generalization error and a suboptimal m
ping of the asymptotic student vectors onto the sp
spanned by the teacher vectors.

To demonstrate learning in an unrealizable scenario,
show the evolution of the order parameters and the gene
zation error for a standard SCM withK53 hidden units
learning an unrealizable task withL51 (M54). In the re-
mainder of the paper, we will focus on uncorrelated isotro
teachers of unitary lengthTnm5dnm . The dynamical evolu-
tion of the overlapsQik andRin follows from integrating the
equations of motion~2! from initial conditions determined
by the ~random! initialization of the student weightsJ; we
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5904 PRE 60SILVIA SCARPETTA AND DAVID SAAD
initialize Qii from uniform distributions in the@0,0.5# inter-
val, QiÞk50, andRin from @0,10212#.

The time evolution of the various order parameters
shown in Figs. 1~a!–1~c! for h50.2. As for realizable sce
nario @6#, the unrealizable dynamics is characterized by t
major phases of learning. Initially, the order parameters
trapped in an unstable fixed point characterized by a lac
differentiation between the hidden units of the student wh
the overlaps of each student unit with all teacher unitsRin
are nearly identical. All the student overlapsQiÞk have
nearly the same value, which does not differ much from
value of the normsQii . Trapping in the symmetric phase fo
unrealizable scenarios is of the same nature as the one
served and analyzed in the realizable case@6,7#. Eventually,
small perturbations introduced by the random initial con
tions lead to an escape from this phase and converg
towards the asymptotic~suboptimal! regime@8#.

Understanding the evolution of the parameters in
asymptotic phase is particularly important in the study
unrealizable scenarios, where no prior knowledge ex
about the asymptotic solutions themselves. The subopt
mapping that emerges from our numerical solutions sugg
that the limited student resources are used mainly to spe
ize oncertain teacher vectors, while retaining small correl
tion with the rest of the teacher vectors. The evolution of
student norms and student-student correlations shown in
1~a! demonstrates that asymptotically, each one of the
dent units imitates one of the teacher units (R11'T11, R24
'T44, andR33'T33!, while ignoring units imitated by othe
student vectors (R13,R14,R21,R23,R31,R34'0), and retain-
ing some correlation with other teacher units, not imitated
other student units (R12,R22,R32). The corresponding evo
lution of the generalization error is shown in Fig. 1~c!.

In structurally unrealizable cases, as for learning w
noise @9#, suboptimal asymptotic performance will be o
tained for any fixed learning rate, suggesting that an ann
ing schedule should be invoked asymptotically.Ideally, one
would expect asymptotically the student vectors to be c
fined to theM-dimensional subspaceSB spanned by the se
of orthogonal unit length teacher vectors, and they can th
fore be represented asM (,N) dimensional vectors in the
teacher coordinate system. This is true for vanishing learning
rates h. However, learning at finiteh results in student
weight vectors not completely confined to the subspaceSB .
The weight vectors of the trained student can then be wri
asJi5(n51

M Rinen1Ji
' , whereJi

' indicates the component o
Ji in the orthogonal subspace. The optimal asymptotic so
tion, with the lowest asymptotic generalization error is ch
acterized by solutions obtained with a vanishing learning r
h and thus a vanishing vectorJ'. In the following section,
we present an analysis of the asymptotic solution when
learning rate is annealed.

IV. ASYMPTOTIC REGIME

The number of order parameters in Eq.~2! is K(K
11)/21KM , so that the analysis becomes more and m
difficult asK andM grow. However, the symmetric architec
ture of the teacher networkTnm5dnm leads to the grouping
of the dynamical variables. In the general case of an unr
izable learning scenario and isotropic teachers, the syste
s
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dynamics can be described in terms of only five variabl
via the ansatz

Qik5Qd ik1C~12d ik!,

Rin5Rd in1S~12d in!u~K2n!1Uu~n2K !, ~3!

for the student-student overlaps and~apart from a relabeling
of the student hidden units! student-teacher overlaps, respe
tively, where the step functionu is 0 for negative argument
and 1 otherwise. As one can see from Fig. 1, this appro
mation ~3! is particularly good in the symmetric phas
~where alsoR[S[U holds! and during the final conver
gence to the asymptotic regime. Asymptotic solutions in
case of an isotropic teacher are characterized by specia
student vectors of similar norms (Qii 5Q for all 1< i<K)
and similar correlations among themselves (Qik5C for all
1< i , k<K, iÞk); each one of these vectors specializes
a certain teacher vector (Rii 5R for all 1< i<K), while all
student vectors have similar correlations with allK teacher
vectors imitated by other student vectors (Rin5S for all 1
< i , n<K, and iÞn), as well as with the otherM2K
teacher vectors on which no student vector specializes (Rin
5U for all 1< i<K, andK,n<M ).

Therefore, the system’s dynamics is described asymp
cally by only five coupled differential equations derived u
ing the relations~3!. In order to find the analytical expressio
for the optimal fixed point, we solve the truncated equatio
of motion, neglecting terms of orderO(h2) in Eqs. ~2!. In
order to find the asymptotic fixed point of this system of fi
coupled equations analytically, we exploit the geometri
constraint that hold between the order parameters to simp
the system. Since at the optimal fixed point student vec
are confined toSB , one may express any vectorJi as

FIG. 2. Theoretical~lines! vs numerical results~circles! for the
optimal fixed pointQ* ,C* ,R* ,S* ,U* . ~a,b! We plot C* ~upper
line!, S* ~lower line!, in the insetQ* ~upper line! and R* ~lower
line!, and in ~b! U* , for the caseL!K as a function ofL at K
5100. ~c,d! The overlapsC* ~upper line!, S* ~lower line!, in the
inset Q* ~upper line! and R* ~lower line!, and in ~d! U* , for the
caseL5 lK as a function ofl at K520; for comparison, dotted lines
are analytical results for theL!K case atK520.
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FIG. 3. The residual generalization error in standard SCM—theoretical~lines! vs numerical results~circles!. ~a! Theoretical value of
Eo(L,K) for the caseL5 lK as a function ofe for L51,2,3 from down to up.~b! Theoretical value ofEo(L,K) for the caseL5 lK ~solid
line! and the caseL!K ~dashed line! as a function ofl 5L/K. K520,100,200 from down to up. Inset: Theoretical value ofEo(L,K) for the
caseL5 lK are plotted as a function ofL for K5100,500,1000,10 000. All the curves, except the one withK5100 ~dashed line!, collapse
onto the same straight line.
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whereen , n51, . . . ,M , are the orthogonal set of teach
vectors. Using this expression for the student vector, one
easily derive a constraint between the order parametersR, S,
U, Q, andC:

Q5R21~K21!S21~M2K !U2,
~4!

C52RS1~K22!S21~M2K !U2.

Unfortunately, the solutions of the truncated equations
motion, even when using the geometric constraint, still c
not be obtained analytically. However, we can obtain
optimal fixed point in the limit of a large network, when th
number of student hidden neuronsK@1 is large~but still
N@K). We expand both the constraint~4! and the truncated
equations of motion in the small parametere[1/K. In this
n
n

a

an

f
-

e

scenario we can distinguish two cases:L[M2K!K
~termed small unrealizability! when the excess of teache
hidden neuronsL is small compared to the large number
student hidden neuronsK @so thatL is of O(e0)#, and L
.K ~termedstrong unrealizability! when the teacher exces
of resourcesL is of the same order of magnitude of th
student resourcesK, so thatL5 lK 5 l e21, with a finite fac-
tor of proportionalityl of O(1). In both cases we find the
fixed point Q* ,C* ,R* ,S* ,U* up to O(e3). In the follow-
ing, we discuss the standard SCM architecture. Analyt
expressions for the approximated optimal fixed point in
small and strong unrealizability cases are given in Appen
A. The dependence of the order parameters at the fixed p
from the unrealizability degreeL is shown in Fig. 2. Exact
numerical results are included in the figures in order to v
date our theoretical predictions. ForL50, the realizable case
fixed point Q* 5R* 51,C* 5S* 50 is recovered (U is
meaningless for realizable scenarios!. The corresponding re
sidual generalization error is
E0
sm5

1

6

L~231p!

p
2

3

2

L~2474A324291!e

~2918A3!3p
1

3

2

L~2859 9251496 432A3118 324LA3231 659L !e2

~2918A3!4p

in the smallL case, and

E0
st52

1

2

l ~2732144A3291p148A3p!

p~2918A3!2e
1

1

2

l ~25611326A3!

p~2918A3!2

2
1

48

l ~864l 2273l 2129 6581144A3l 22472lA3217 088A3!e

p~2918A3!2
s,
s

to
in the strong unrealizability case~with the L5 lK scaling
assumption!. To examine the accuracy of our approximatio
theoretical results are compared with values obtained
merically. Dependence ofE0

st on K whenL is fixed is shown
in Fig. 3~a!. Both the theoretical predictions of the residu
error,E0

sm andE0
st, are shown in Fig. 3~b! as a function of the

relative number of teacher units in excessl 5L/K. We see
,
u-

l

that the solution obtained forL!K ~dashed line! becomes
more and more inaccurate asl increases, as one expect
while the scaling assumptionL5 lK gives accurate result
also for a very small value ofL, where it coincides with the
L!K solution. It is interesting to note that for largeK, the
residual error is proportional toL only, giving a direct indi-
cation for the number of additional hidden units required
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5906 PRE 60SILVIA SCARPETTA AND DAVID SAAD
make the problem realizable. Indeed, all the lines for
residual generalization error corresponding toK
5100,500,1000,10 000 collapse onto one straight line if p
ted as a function ofL, as shown in inset of Fig. 3~b!.

In order to describe the approach of the system to
optimal fixed point, we take into consideration terms of ord
O(h2) in the dynamical equations~2!. In this paper we will
concentrate on the annealed learning rateh5h0 /a, since
this is the optimal annealing schedule, as in the realiza
(K5M ) noisy case@9#. To solve the asymptotics of the sy
tem, we expand the full equations of motion to first ord
around our estimation of the optimal fixed poi
Q* ,C* ,R* ,S* ,U* . We find five linear coupled differentia
equation for the five order parameters represented by
vectoru,

d

da
u5haMu1ha

2b, ~5!

where

u5~Q2Q* ,C2C* ,R2R* ,S2S* ,U2U* !T

[~q,c,r ,s,u!T, ~6!

ha5h0 /a, and both the zero-order termb and the Jacobian
matrix M are functions of the student network sizeK and of
the degree of unrealizabilityL. The asymptotic equations o
motion ~5! are derived by dropping terms of orde
O(hauuuuu2) and higher, and terms of orderO(ha

2u). The
latter are linear in the order parametersu, but are negligible
in comparison to thehau and ha

2b terms in Eq.~5! as a
→`.

Since as our estimation of the optimal fixed point we u
an expansion arounde50 truncated at the third order, the
also the vectorb and the Jacobian matrixM of the first
derivatives computed at the fixed point are in the form
truncated series ine.

Equations~5! can be exactly solved if one computes an
lytically the eigenvalues and eigenvectors of the matrixM.
Finding analytically exact eigenvalues and eigenvectors
M is hampered by technical difficulties. We therefore ke
the first two orders in the expansion

M5Mo1eM11e2M21••• ~7!

and use the theory of perturbation for nonsymmetric matri
~e.g., as in@10,11#! in order to compute the eigenvalues a
eigenvectors. We stop at the first-order correction ine, l i

5l i
01el i

1 , where the eigenvalue degeneracy which ex
in the leading-order terms is removed, to find five differe
negative eigenvalues:

l152
1

36

~2918A3!

p
, l252

2

3

~2312A3!

p
,

l352
1

pe
2

1

3

2312A3

p
,

~8!

l452
1

pe
2

1

12

22118A3

p
,

e

t-

e
r

le

r

he

e

f

-

f
p

s

s
t

l552
2

pe
2

2

3

2312A3

p

for the L!K case, and

l152
1

36

2918A3

p
, l252

2

3

2312A3

p
,

l352
1

pe
2

144A32393

444p
l 2

27771296A3

444p
,

~9!

l452
1

pe
2

36A3215

111p
l 2

2111174A3

111p
,

l552
2

pe
12

2914A3

p~2918A3!
l 12

225114A3

p~2918A3!

for the L5 l /e case. Results turn out to be in good agre
ment, especially for largeK, with the exact numerical value
of eigenvalues of the Jacobian matrix evaluated around
true optimal fixed point, which can be found numerical
While l1 andl2 do not depend one and l, all other eigen-
values do. We find thatl5,l4,l3,l2,l1,0 for all val-
ues of 0, l ,1/e and 0<e<0.5 ~i.e., all values of interest
0,L,K2 andK.2).

If l i are the eigenvalues of the matrixM, andD is the
matrix of the eigenvectors, such that

D21MD5F l1 0 0 0 0

••• •••

0 0 0 0 l5

G , ~10!

then, following@9#, the solution of Eq.~5! is

u~a!5DL~a,a0!D21u~a0!1DQ~a,a0!D21b, ~11!

whereL(a,a0) and Q(a,a0) are diagonal matrices whos
elements take the form

Lii ~a,a0!5S a

a0
D l ih0

and ~12!

Q i i ~a,a0!5
2h0

2

11l ih0
@a212al ih0a0

212l ih0#.

As the first contribution in Eq.~11! depends on the actua
initial conditionsu(a0), and since we are interested main
in the asymptotic regime, it will be neglected in what follow
as it decays more rapidly than the second contribution.

We expand the explicit expression of the generalizat
error, given in Eq.~B1!, around the optimal fixed point to th
second order inu, to obtain

«g
asy5Eo1E1

Tu1uTE2u.

Elements of both the vectorE1 and the matrixE2 are trun-
cated series in the small parametere, since the optimal fixed
point is known analytically up toO(e3).
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Using the eigenvalues of Eq.~8! or Eq. ~9! and the solu-
tion ~11!, the generalization error can then be rewritten a
combination of the modesQ i i , whose coefficients are func
tions of e andL.

We find that only two modes,Q22 and Q55, associated
with eigenvaluesl2 andl5, survive in the linear term of the
generalization error when we truncate the expansion ofElin
to the second leading order ine. We verified numerically
that the modesQ11, Q33, and Q44 are orthogonal to the
first-order term in the generalization error, and therefore
not contribute to its decayat all orders ine, but contribute
only to the decay of the second-order term with the cor
sponding eigenvalues 2l1 , 2l3, and 2l4.

Therefore, the critical learning ratehc , above which the
generalization«g

asy decays as 1/a, is

hc5maxH 2
1

2l1
,2

1

l2
,2

1

2l3
,2

1

2l4
,2

1

l5
J

52
1

2l1
5

18p

2918A3

in both theL!K @Eq. ~8!# andL5 lK @Eq. ~9!# cases.
For h0.hc , the generalization error decays like 1/a to

the residual errorEo ; neglecting second-order terms, sin
they decay as 1/a2, one finds an asymptotic error decay
the form

FIG. 4. ~a! The optimal learning rateh0
opt( l ,K) for l

50.05,0.5,1~circled lines, from down to up! as a function ofe.
Solid line is ho

opt(e) for the caseL!K. In the inset, the optima
prefactor of error decay scaled withL, f (L,K,ho

opt)/L, is shown as
a function ofK. For all values ofL51,100,2000 the plots collaps
onto the same curve, corresponding tof /L540.3 K. ~b! The scaled
prefactorf (L,K,h0)/L as a function ofh0 for student network size
K510 ~solid line!, K550 ~dots!, andK5100 ~circles!. All values
of L give the same result (L51,10,100).
a

o

-

«g
asy5E01h0

2S c1~L,K !

~2l5h021!
1

c2~L,K !

~2l2h021! Da21

5E01 f ~L,K,h0!
1

a
, ~13!

wherec1 andc2 for both casesL!K andL5 lK are given in
Appendix B.

For optimal decay of the asymptotic error, one has also
minimize the prefactorf (L,K,h0) in Eq. ~13!. In the case of
L!K, the optimal value ofho is independent ofL, while in
the case ofL5 lK it shows a rather weak dependence onl.
The values ofh0

opt(L,K) for l 50.05,0.5,1 as a function ofe
are shown in Fig. 4~a!, whereho

opt(K) for the caseL!K is
also included. For largeK, the optimal prefactorh0

opt, for
both the small and strong unrealizability case, tends to
same value (h0

opt;20.609).
The sensitivity of the generalization error decay fac

f (L,K,h0) to the choice ofh0 is shown in the inset of Fig.
4~b!, where f (L,K,h0)/L is plotted as a function ofh0 for
K510, 50, 100, andL51,100. Curves for different value
of L collapse onto the same line, showing thatf (L,K,h0)/L
is a function of K and h0 only. The optimal prefactor
f (L,K,h0

opt) is shown as a function ofK in the inset of Fig.
4~a!; it seems thatf (L,K,h0

opt) can be well approximated a
proportional to the productLK.

V. NORMALIZED SCM ARCHITECTURE

In the standard SCM architecture, the output of the s
dent and teacher network range, respectively, in@2K,K#
and @2M ,M #. Therefore, not only is the complexity of th
student and teacher mapping different, but also the rang
values that the outputs can assume. We examine in this
tion unrealizable scenarios for normalized SCM architectu
in which hidden-to-output weights are normalized, so th
output values for networks of different sizes always ran
over the same interval@21,1#.

We look for the optimal asymptotic solution, followin
the procedure that we have described in the preceding
tion. Using relations~3!, we expand both the equation o
motion ~2! truncated at orderO(h) and the constraints~4! in
the small parametere. We find the fixed point solution itera
tively for the caseL!K, but unfortunately a solution canno
be found analytically in theL5 lK case. Therefore, in the
rest of the paper we will focus on the small unrealizabil
case (L!K). The optimal fixed point solutions up to orde
FIG. 5. Theoretical~lines! vs numerical re-
sults ~circles! for the optimal fixed point
Q* ,C* ,R* ,S* ,U* in normalized SCM architec-
ture, as a function ofL at K5100. ~a! The over-
lapsC* ~upper line! andS* ~lower line!, ~b! the
overlapU* , and in the insetQ* ~upper line! and
R* ~lower line!. This is to be compared with
Figs. 2~a! and 2~b! for un-normalized SCM archi-
tecture.
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FIG. 6. ~a! Residual errorE0
n(L,K) in normal-

ized SCM architecture: theoretical~dashed line!
vs numerical results~solid lines! for K550,100
~from up to down!. ~b! The optimal learning rate
ho

opt(L,K) in normalized SCM architectures fo
L51,20,200,1000 as a function ofe. All lines
collapse onto the same curveh0

opt520.27 K. In
the insetho

opt(L,K) is shown forK510 as a func-
tion of L.
r
ro

nd
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od
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ll
rder

rd
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ity
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t

timal fixed pointQ* ,C* ,R* ,S* ,U* on L is shown in Fig. 5,
validated by comparison with numerical solutions. Contra
to the un-normalized architecture, here the fixed point p
duces negative values for the order parametersC and S.
Moreover, Q and R decrease withL much faster than in
un-normalized architecture. This configuration correspo
to a residual generalization error:

E0
n5

1

6

~p23!Le2

p

1S 1

2

~2420A31750148pA3291p!L2

p~2918A3!2

1
1

2

~326A32561!L

p~2918A3!2 D e3, ~14!

which, apart from the 1/K2 normalization factor, is lower
than the one obtained in un-normalized SCM. Numerical v
ues of the residual error are compared with the theoret
results~14! in Fig. 6~a!. As we expect, the agreement is go
whenL is much lower thanK, and improves for largeK.

In the annealed learning rateh5h0 /a schedule, the dy-
namics of the system in the vicinity of the optimal fixe
point is described by the linearized equations of motion~5!,
whose solution is given by Eq.~11!. The leading order in the
Jacobian matrix, this time, isO(e0), in contrast with the
non-normalized SCM case, where it was ofO(e21). Keep-
ing only the first two orders in the expansion ofM and using
again the perturbation theory for nonsymmetric matrices,
obtains the following approximations for the five eigenv
ues:

l152
1

36

e~2918A3!

p
, l252

2

3

e~2312A3!

p
,

l352
1

p
1e~0.188 9820.181 92L !,

l452
1

p
1e~20.049 1220.182 05L !,

l552
2

p
1e~20.098 4220.364 70L !,

where analytical results have been replaced by the nume
equivalent for brevity, andl1 andl2 are exactlye times the
y
-

s

l-
al

e

al

corresponding eigenvalues in the standard SCM@Eq. ~8!#. It
is again the case thatl5,l4,l3,l2,l1,0 for the range
of valuesK,L which we are interested in~all L.0 andK
.1).

Again, we find that only two modes,Q22 and Q55, sur-
vive in the linear term of the generalization error, while a
other modes contribute only to the decay of the second-o
term. The critical learning rate is therefore

hc
n5maxH 2

1

2l1
,2

1

l2
,2

1

2l3
,2

1

2l4
,2

1

l5
J 52

1

2l1

5
18p

~2918A3!e
,

exactly K times the critical learning rate for the standa
SCM architecture. For optimal decay of the asymptotic err
one has to minimize numerically the prefactorf (h0 ,L,K) in
Eq. ~13!. The value ofh0

opt(L,K), shown in Fig. 6~b!, turns
out to be almost proportional toK only, with a very weak
dependence onL @inset of Fig. 6~b!#. It is to be compared
with the corresponding solid line in Fig. 4~a! for non-
normalized networks andL!K.

The optimal error decay prefactorf (h0
opt,L,K) is shown

in Fig. 7~a!. It turns out to be well fitted byf (h0
opt,L,K)

55.83L/K, i.e., about 7K2 times smaller than the optima
prefactor in the un-normalized architecture. The sensitiv
of the generalization error decay factorf (L,K,h0) to the
choice ofh0 is shown in Fig. 7~b!.

FIG. 7. ~a! The optimal prefactor of the asymptotic error dec
in normalized SCM scaled withL, f (L,K,ho

opt)/L, is shown as a
function ofK. For all values ofL51,10,20 the plots collapse on th
same curvef /L55.83/K. ~b! The prefactorf (L,K,h0)/L as a func-
tion of h0 for student network sizeK510 ~solid line!, K550
~dots!, andK5100 ~circles!. All values of L give the same resul
(L51,10,100).
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VI. SUMMARY AND DISCUSSION

Solving the dynamical equations numerically in unreal
able scenarios, where the student network does not h
enough resources to imitate the teacher mapping, shows
the residual generalization error increases with the learn
rate and is therefore minimal when the learning rate is
nealed toward zero. The optimal fixed point of the dynam
is found analytically for large network sizeK. It shows a
different behavior in the standard and normalized SCM
chitectures: In the normalized architecture, the overlapR*
between each student vector and the teacher vector it imi
decreases withL much faster than in the corresponding u
normalized architecture; in addition, contrary to the u
normalized case, each student vector is anticorrelated
all the other student vectors (C* ,0) and with the set of
teacher vectors on which the other student vectors speci
(S* ,0). This configuration also turns out to give a mu
lower generalization error than that of the un-normalized
chitecture. In the un-normalized architecture, each stud
vector also keeps a positive correlation with the set
teacher vectors on which the other student vectors speci
to make up for the disparity in the output ranges. Howev
the student network is unable to make up completely for
output range differences.

Solving the asymptotic equations analytically for lar
system sizeK, one can analyze the approach of the system
the optimal fixed point. It turns out that the generalizati
error decays to the asymptotic residual error like 1/a if the
learning rate is annealed ash0 /a andh0.h0

crit . We found
that the critical learning rateho

crit is independent ofL in both
the standard and normalized SCM. The optimal decay of
generalization error is achieved at an optimal learning r
valueh0

opt, which shows only a weak dependence onL and
K in standard SCM, and is proportional toK in the normal-
ized SCM architecture. The optimal prefactor of t
asymptotic error decay turns out to be proportional to
productLK in standard SCM, and is significantly smaller
normalized SCM, where it is proportional to the ratioL/K.

It would be interesting to extend the analysis of unrea
ability to general two-layer neural networks in which th
hidden-to-output parametersg are adaptive, and not of fixe
strength, as has been considered here.
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APPENDIX A: THE FIXED POINT

The optimal fixed point is derived for largeK. The fol-
lowing approximation is exact up to orderO(e3). For the
standard SCM architecture, in the small unrealizability ca
the approximated optimal fixed point is of the form~some
analytical results have been replaced by the numer
equivalent for brevity!

R* 512
9

2

Le2

2918A3
1S 2

162

1369
LA31

1233

1369
L D e3,
-
ve
hat
g
-

s

r-

tes

-
ith

ze

r-
nt
f
ze
r,
e

to

e
te

e

-

/
-

e,

al

S* 52
LA3e3

2918A3
,

U* 5e1S 12
2

3
A3D e2

1
1

24

~48LA32108L1760A321299!e3

2918A3
,

Q* 511S 29
L

2918A3
1L D e2

1S 2
6448

4107
LA31

5204

1369
L D e3,

C* 5Le212
L~16A3225!e3

2918A3
,

while in the strong unrealizability scenario,

R* 512
9

2

l e

2918A3
1~0.2444l 210.6958l !e2

1~0.1672l 310.5275l 220.197l !e3,

S* 52
A3l e2

2918A3
1~0.1778l 20.1619l 2!e3,

U* 5e1
1

2

~29l 14lA3250128A3!e2

2918A3

1~0.14810.467l 10.0824l 2!e3,

Q* 511S 29
l

2918A3
1 l D e

20.010 59~286.9l 22103.0l !e21~0.092 00l 3

11.275l 220.07l !e3,

C* 5e l 1
l ~29l 14lA3250132A3!e2

2918A3

1~20.136l 210.2104l 310.678l !e3.

In the normalized SCM architecture, forL!K we find

R* 5126
L~2312A3!e

2918A3
1~0.526L221.336L !e2,

S* 522
LA3e2

2918A3
10.000 013 16L~23 930.0

180 930.0L !e3,
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U* 5e2
~218L114LA3214A3125!e2

2918A3

1~1.591L210.001L10.149!e3,

Q* 51212
L~2312A3!e

2918A3
20.006 869L~2200.0L

1243.0!e21~20.602L320.533L220.309L !e3,

C* 5
L~4A329!e2

2918A3
10.000 039 48L~8110.0

122 380.0L !e3.

APPENDIX B: GENERALIZATION ERROR
ASYMPTOTIC DECAY

Explicit expressions obtained for the generalization er
«g[^«(J,j)&$j% are

«g5FK arcsinS Q

11QD1~K21!K arcsinS C

11QD
1

1

6
~L1K !p22~K21!K arcsinS S

A212Q
D

r

22K arcsinS R

A212Q
D

22LK arcsinS U

A212Q
D Y p ~B1!

for the standard SCM architecture and

«g5
S arcsinS Q

11QD
K

1

~K21!arcsinS C

11QD
K

1
1

6

p

L1K

22

~K21!arcsinS S

A212Q
D

L1K
22

arcsinS R

A212Q
D

L1K

22

L arcsinS U

A212Q
D

L1K
D Y p ~B2!

for the normalized SCM network.
When the learning rate is annealed ash5ho /a and ho

.hc , then the generalization error decays proportionally
1/a, as in Eq.~13!, to the residual errorE0 corresponding to
the optimal fixed point.

In standard SCM architecture, in the caseL!K we find
the following form for the factorsc1 andc2 in Eq. ~13! for
the asymptotic error decay:
c152
1

6

L~9744%1112182406p1227A3p2681A325448A3%1!

p3~131A32144!e

2
1

6

L~24321393A32131A3p1144p13144A3%123456%1!

p3~131A32144!e2
,

%15arcsinS 1

6
A3D ,

c252
1

6
LF1152 arcsinS 3

4D2236A3296A3p1262p26288 arcsinS 1

6
A3D12304A3 arcsinS 1

6
A3D2210

21048 arcsinS 3

4DA3G Y @p3~131A32144!e#,

while in the caseL5 lK it is

c152
1

6

~21017A3119 296%12804p28136A3%1124121339A3p!l 2

p3~5A3196!~2918A3!e2

1S 2
1

6

229 256A3%11657022190p152 560%123657A311219A3p

p3~5A3196!~2918A3!e2

2
1

6

17 352A3%12723A3p222321744p217 856%112169A3

p3~5A3196!~2918A3!e3 D l ,
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%15arcsinS 1

6
A3D ,

c252
1

6 F1446p234 704 arcsinS 1

6
A3D15952 arcsinS 3

4D21404A32136225784 arcsinS 3

4DA32496A3p

111 904A3 arcsinS 1

6
A3D G l Y @p3~5A3196!~2918A3!e2#.
ge

d
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